Package: amplify (via r-universe) November 5, 2024 Title Automate PCR Tasks Reproducibly Version 0.1.0 **Description** PCR tasks - like plate layout planning, dilution calculations, visualization, and analysis - are often repetitive, tedious, prone to error, and poorly documented. amplify seeks to automate these tasks, as well as documenting them (through both code and generated reports) as a bonus. License MIT + file LICENSE **Encoding** UTF-8 LazyData true **Roxygen** list(markdown = TRUE) RoxygenNote 7.3.2 **Imports** dplyr (>= 1.1.0), forcats, ggplot2, gplate, gt, knitr, mop, purrr, readxl, rlang, rmarkdown, stats, stringr, tidyr, utils, vctrs Remotes KaiAragaki/gplate, KaiAragaki/mop **Depends** R (>= 4.1.0) VignetteBuilder knitr **Suggests** testthat (>= 3.0.0) Config/testthat/edition 3 URL https://kaiaragaki.github.io/amplify/ **Config/pak/sysreqs** make libicu-dev libxml2-dev libssl-dev libnode-dev libx11-dev **Repository** https://kaiaragaki.r-universe.dev RemoteUrl https://github.com/KaiAragaki/amplify RemoteRef HEAD RemoteSha d3bb78428ff1b437652b2289d2402a063840787b 2 dummy_rna_conc ## **Contents** | 2 | |----| | 3 | | 3 | | 4 | | 5 | | 6 | | 6 | | 7 | | 8 | | 9 | | 9 | | 10 | | 11 | | 11 | | 12 | | 14 | | | dummy_rna_conc Example data of RNA samples with concentrations ## Description A dataset containing fabricated sample names and RNA concentrations ## Usage dummy_rna_conc ## **Format** A data frame with 8 rows and 2 columns sample name of sample conc concentration of RNA, in ng/uL pcr_calc_slope 3 pcr_calc_slope Recalcuate standard slope of quantity vs Ct ## Description Recalcuate standard slope of quantity vs Ct #### Usage ``` pcr_calc_slope(tidy_pcr) ``` ## Arguments tidy_pcr a object that has been tidied by tidy_pcr #### Value a tibble with an updated slope column pcr_control Calculate Delta Ct mean based on given control probe ## Description Calculate Delta Ct mean based on given control probe ## Usage ``` pcr_control(x, control_probe) ## S3 method for class 'pcr' pcr_control(x, control_probe, ...) ## S3 method for class 'data.frame' pcr_control(x, control_probe, ...) ``` ## **Arguments** ``` x A pcr or data. frame object control_probe A probe to be used as an endogenous control (eg GAPDH) ``` #### Value An object with class the same as input pcr_lib_calc #### **Examples** ``` system.file("extdata", "untidy-pcr-example.xls", package = "amplify") |> read_pcr() |> pcr_control("GAPDH") ``` pcr_lib_calc Calculate library PCR concentrations ## Description Calculate library PCR concentrations ## Usage ``` pcr_lib_calc(pcr, dil_factor = 1000) ``` ## **Arguments** pcr a pcr object. Will be tidied if not already. dil_factor integer. The factor that the libraries were diluted for pcr ## Value a pcr object, containing the input columns as well as: - standard_diff The differences between the ct_mean of a standard and one step up in the dilution (ie more concentrated, lower Ct). The most concentrated dilution has a value of 0 - dil 2^(standard_diff). The accuracy of this metric assumes that the efficiency of the PCR is 100%, which is likely good but not perfect! In the case of the first standard, dil = 0 - quant_actual For standards, the presumed quantity of standard, calculated from dil. For samples, quantity - concentrationThe concentration of library, before dilution ``` system.file("extdata", "untidy-standard-curve.xlsx", package = "amplify") |> read_pcr() |> pcr_lib_calc() ``` pcr_lib_qc 5 pcr_lib_qc Create library prep quality control data #### **Description** Create library prep quality control data ## Usage ``` pcr_lib_qc(lib_calc_pcr) ``` ## **Arguments** ``` lib_calc_pcr A pcr object, output from pcr_lib_calc ``` #### **Details** While the output of this function on its own is can theoretically be used to gauge library quality, it is best used in conjunction with a function like pcr_lib_calc_report #### Value a pcr object with list with: - standards Data for individual standards, including calculated dilutions, given and calculated quantities, raw Ct, etc. - samples Data for individual samples, including calculated concentrations, raw Ct, etc. - sample_summary Summary statistics for samples grouped by replicates - standard_summary Summary statistics for standards groupd by replicates - outliers Data for individual samples and standards with and without their putative outliers (po) per replicate group ``` system.file("extdata", "untidy-standard-curve.xlsx", package = "amplify") |> pcr_tidy(pad_zero = TRUE) |> pcr_lib_calc() |> pcr_lib_qc() ``` 6 pcr_lib_qc_plot_dil ``` pcr_lib_qc_plot_conc Plot concentration of libraries across samples ``` ## Description Plot concentration of libraries across samples ## Usage ``` pcr_lib_qc_plot_conc(lib_qc) ``` ## Arguments lib_qc Output of pcr_lib_qc #### Value ``` a ggplot ``` ## **Examples** ``` system.file("extdata", "untidy-standard-curve.xlsx", package = "amplify") |> pcr_tidy(pad_zero = TRUE) |> pcr_lib_calc() |> pcr_lib_qc() |> pcr_lib_qc_plot_conc() ``` ## Description Plot standard dilutions compared to a perfect dilution ## Usage ``` pcr_lib_qc_plot_dil(lib_qc) ``` ## Arguments lib_qc Output of pcr_lib_qc #### **Details** An optimal dilution will show blue and grey dots perfectly aligned. A plot with blue dots consistently lagging more behind the gray dots implies the dilutions are consistent, but less dilute than a 1:10 dilution. Likewise, a plot with blue dots that consistently outpace the gray dots more with each passing dot signifies consistently over-diluting the standards. Samples are shown as red dots. #### Value ``` a ggplot ``` #### **Examples** ``` system.file("extdata", "untidy-standard-curve.xlsx", package = "amplify") |> pcr_tidy() |> pcr_lib_calc() |> pcr_lib_qc() |> pcr_lib_qc_plot_dil() ``` ``` pcr_lib_qc_plot_outliers ``` Plot mean centered samples without putative outliers ## **Description** Plot mean centered samples without putative outliers #### Usage ``` pcr_lib_qc_plot_outliers(lib_qc) ``` ## **Arguments** ``` lib_qc Output of pcr_lib_qc ``` ## **Details** A sample is deemed an outlier if, upon its removal, it is more that 3Z from the mean of the remaining. This boundary of +/-3Z is demarcated by the shaded area. Gray samples are outliers. Samples |Z| > 10 away are denoted by arrows («<) pointing in their direction as well as with their Z #### Value ``` a ggplot ``` #### **Examples** ``` system.file("extdata", "untidy-standard-curve.xlsx", package = "amplify") |> pcr_tidy(pad_zero = TRUE) |> pcr_lib_calc() |> pcr_lib_qc() |> pcr_lib_qc_plot_outliers() ``` ## **Description** Plot the log of library quantities vs Ct #### Usage ``` pcr_lib_qc_plot_slope(lib_qc) ``` ## **Arguments** lib_qc Output of pcr_lib_qc ## **Details** An optimal plot will have a slope of -3.32. This is because we expect that a sample 10x more concentrated than another will reach the same abundance in 3.32 doublings FASTER (that is, 3.32 fewer doubles, or Cts). Therefore, for each 10x increase in concentration (one point left to right on the plot) we expect a decrease in CT of 3.32. A steeper slope (more negative) implies a poorer efficiency (more cycles are required to reach 10x than perfect doubling would imply) ## Value a ggplot ``` system.file("extdata", "untidy-standard-curve.xlsx", package = "amplify") |> pcr_tidy(pad_zero = TRUE) |> pcr_lib_calc() |> pcr_lib_qc() |> pcr_lib_qc_plot_slope() ``` pcr_lib_qc_report 9 pcr_lib_qc_report Generate visual library prep pcr quality control report #### **Description** Generate visual library prep pcr quality control report ## Usage ``` pcr_lib_qc_report(pcr_lib_qc, report_path = NULL) ``` ## **Arguments** pcr_lib_qc output from pcr_lib_qc report_path the name of the report as well as where it should be output. If NULL, it will export to a temp directory ## Value The path to the report ## **Examples** ``` system.file("extdata", "untidy-standard-curve.xlsx", package = "amplify") |> pcr_tidy() |> pcr_lib_calc() |> pcr_lib_qc() |> pcr_lib_qc_report() ``` pcr_plan Plan PCR experiment ## Description Plan PCR experiment ## Usage ``` pcr_plan(data, n_primers, format = 384, exclude_border = TRUE, primer_names = NULL, headless = TRUE, has_names = TRUE) ``` 10 pcr_plan_report #### **Arguments** data a data.frame, with samples as the first column (if has_names = TRUE) and RNA concentrations as the second (or first, if has_names = FALSE) n_primers integer. Number of primers to be used in the experiment. format integer. 96 or 384 - the number of wells of the plate planned to be used exclude_border logical. Should the border be excluded to avoid edge effects? Default is TRUE. primer_names character vector. Names of primers. headless logical. If FALSE, return invisible and redirect to shiny application. has_names logical. Is the first column the names of the samples? #### Value a named list ## **Examples** ``` dummy_rna_conc |> pcr_plan(n_primers = 3) ``` pcr_plan_report Create a report from a PCR plan ## **Description** Create a report from a PCR plan #### Usage ``` pcr_plan_report(pcr_plan, file_path = NULL) ``` ## **Arguments** pcr_plan output from pcr_plan file_path Where the report should be written, as well as the file name. Defaults to temp file. ## Value a named list, like the output of pcr_plan, but with the output file path appended. ``` dummy_rna_conc |> pcr_plan(n_primers = 3) |> pcr_plan_report() ``` pcr_plate_view 11 pcr_plate_view View sample plating layout ## Description View sample plating layout ## Usage ``` pcr_plate_view(pcr, fill = target_name) ``` ## Arguments fill character. A column in tidy_pcr used to use to fill the geom_tiles tidy_pcr an output from the pcr_tidy function #### Value a ggplot ## **Examples** ``` system.file("extdata", "untidy-pcr-example.xls", package = "amplify") |> read_pcr() |> pcr_plate_view() ``` pcr_plot Plot qPCR results ## Description Plot qPCR results ## Usage ``` pcr_plot(x, ...) ## S3 method for class 'pcr' pcr_plot(x, ...) ## S3 method for class 'data.frame' pcr_plot(x, ...) ``` ## **Arguments** X a pcr object or data. frame pcr_rq #### Value ``` a ggplot ``` #### **Examples** ``` system.file("extdata", "untidy-pcr-example.xls", package = "amplify") |> pcr_tidy() |> pcr_rq("RD1") |> pcr_plot() ``` pcr_rq Recalculate relative quantities for a given experiment ## **Description** Recalculate relative quantities for a given experiment #### Usage ``` pcr_rq(x, relative_sample, control_probe = NULL, ...) ## S3 method for class 'pcr' pcr_rq(x, relative_sample, control_probe = NULL, ...) ## S3 method for class 'data.frame' pcr_rq(x, relative_sample, control_probe = NULL, ...) ``` ## Arguments #### Value An object of same class as x ``` dat_path <- system.file("extdata", "untidy-pcr-example.xls", package = "amplify") read_pcr(dat_path) |> pcr_rq("U6D1") # Can also be run after using pcr_control: ``` pcr_rq ``` read_pcr(dat_path) |> pcr_control("GAPDH") |> pcr_rq("U6D1") ``` # **Index** ``` \ast datasets dummy_rna_conc, 2 {\tt dummy_rna_conc}, {\color{red} 2} pcr_calc_slope, 3 pcr_control, 3 pcr_lib_calc, 4 pcr_lib_qc, 5 pcr_lib_qc_plot_conc, 6 pcr_lib_qc_plot_dil, 6 pcr_lib_qc_plot_outliers, 7 pcr_lib_qc_plot_slope, 8 pcr_lib_qc_report, 9 pcr_plan, 9 pcr_plan_report, 10 pcr_plate_view, 11 pcr_plot, 11 pcr_rq, 12 ```